Do Schizophrenic Brains Repair Themselves?

Preliminary research suggests that the brains of schizophrenia patients may regain tissue mass as the illness wears on.

Written byJef Akst
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ANDRZEJ KRAUZEAs a psychiatrist at Western University in London, Ontario, Lena Palaniyappan regularly sees patients with schizophrenia, the chronic mental disorder that drastically affects how a person thinks, feels, and behaves. The disorder can be devastating, often involving hallucinations and delusions. But one thing Palaniyappan and other mental health professionals have noticed is that, unlike those with degenerative neurological disorders such as Alzheimer’s disease, Huntington’s, or Parkinson’s, sometimes schizophrenia patients eventually start to improve.

“In the clinic we do actually see patients with schizophrenia having a very relentless progress in early years,” Palaniyappan says. “But a lot of them do get better over the years, or they don’t progress as [quickly].” So far, most research has focused on the neurological decline associated with schizophrenia—typically involving a loss of brain tissue. Palaniyappan and his colleagues wondered whether there might be “something happening in the brain [that] helps them come to a state of stability.”

To get at this question, he and his colleagues performed MRI scans to assess the cortical thickness of 98 schizophrenia patients at various stages of illness. Sure enough, the researchers noted that, while patients who were less than two years removed from their diagnosis had significantly ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH