Early Epigenetic Influence

Random chance, plus small differences in uterine environments, give rise to divergent epigenetic patterns in identical twins.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Scientists are still teasing out the contributions of genetic and environmental factors to epigenetic marks on the genome. Differences in DNA methylation patterns have been linked to various disease occurrences in genetically identical twins, for example, suggesting an environmental impact. And a new study, out this week (July 15) in Genome Research, extends the influence of the environment in to the uterus by demonstrating that differences between identical twins in methylation are detectable at birth. Surprisingly, methylation patterns between some twins differ more than between unrelated individuals, also suggesting a role for random chance in the development of the epigenome.

“We already know that twins behave differently and look different, and it’s probably due to epigenetics,” said Jeffrey Craig, who led the study with Richard Saffery, both at the University of Melbourne.

Because of their identical genomes, monozygotic twins allow scientists to identify epigenetic differences that may serve as markers ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Sabrina Richards

    This person does not yet have a bio.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
Explore polypharmacology’s beneficial role in target-based drug discovery

Embracing Polypharmacology for Multipurpose Drug Targeting

Fortis Life Sciences
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

BIOVECTRA

BIOVECTRA is Honored with 2025 CDMO Leadership Award for Biologics

Sino Logo

Gilead’s Capsid Revolution Meets Our Capsid Solutions: Sino Biological – Engineering the Tools to Outsmart HIV

Stirling Ultracold

Meet the Upright ULT Built for Faster Recovery - Stirling VAULT100™

Stirling Ultracold logo
Chemidoc

ChemiDoc Go Imaging System ​

Bio-Rad