Early Epigenetic Influence

Random chance, plus small differences in uterine environments, give rise to divergent epigenetic patterns in identical twins.

Written bySabrina Richards
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Scientists are still teasing out the contributions of genetic and environmental factors to epigenetic marks on the genome. Differences in DNA methylation patterns have been linked to various disease occurrences in genetically identical twins, for example, suggesting an environmental impact. And a new study, out this week (July 15) in Genome Research, extends the influence of the environment in to the uterus by demonstrating that differences between identical twins in methylation are detectable at birth. Surprisingly, methylation patterns between some twins differ more than between unrelated individuals, also suggesting a role for random chance in the development of the epigenome.

“We already know that twins behave differently and look different, and it’s probably due to epigenetics,” said Jeffrey Craig, who led the study with Richard Saffery, both at the University of Melbourne.

Because of their identical genomes, monozygotic twins allow scientists to identify epigenetic differences that may serve as markers ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD

Products

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

agilent-logo

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies