Early Successes Make CRISPR-Based Medicine a Possibility

CRISPR-Cas9’s molecular scissors—thus far limited to the lab bench—may soon find themselves at work directly in the human body.

Aparna Nathan, PhD
| 4 min read
istock-845814134-800x560

istock-845814134-800x560

istock-845814134-800x560

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Preliminary results from an ongoing trial by Intellia Therapeutics show that a CRISPR-Cas9-based drug can be delivered into the body to target the liver and reduce expression of the gene that causes transthyretin amyloidosis (ATTR).1 This is the first clinical trial demonstrating successful in vivo gene editing; the results suggest that it may be possible to safely edit the genomes of cells in the body.

“For in vivo delivery, the goal is that you can administer CRISPR as a medicine to the patient,” said Laura Sepp-Lorenzino, chief scientific officer of Intellia Therapeutics.

ATTR is characterized by a misfolded version of the transthyretin (TTR) protein that builds up in the heart, nervous system, and kidneys. Patients generally experience pain, weakness, and the inability to control basic body functions. “It's a truly dreadful condition,” said Julian Gilmore, a physician-scientist at the National Amyloidosis Centre at University College London, who led the trial.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Aparna Nathan, PhD

    Aparna Nathan, PhD

    Aparna is a freelance science writer with a PhD in bioinformatics and genomics at Harvard University. Her writing has also appeared in The Philadelphia Inquirer, Popular Science, PBS NOVA, and more.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide