Early Successes Make CRISPR-Based Medicine a Possibility

CRISPR-Cas9’s molecular scissors—thus far limited to the lab bench—may soon find themselves at work directly in the human body.

Written byAparna Nathan, PhD
| 4 min read
istock-845814134-800x560
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Preliminary results from an ongoing trial by Intellia Therapeutics show that a CRISPR-Cas9-based drug can be delivered into the body to target the liver and reduce expression of the gene that causes transthyretin amyloidosis (ATTR).1 This is the first clinical trial demonstrating successful in vivo gene editing; the results suggest that it may be possible to safely edit the genomes of cells in the body.

“For in vivo delivery, the goal is that you can administer CRISPR as a medicine to the patient,” said Laura Sepp-Lorenzino, chief scientific officer of Intellia Therapeutics.

ATTR is characterized by a misfolded version of the transthyretin (TTR) protein that builds up in the heart, nervous system, and kidneys. Patients generally experience pain, weakness, and the inability to control basic body functions. “It's a truly dreadful condition,” said Julian Gilmore, a physician-scientist at the National Amyloidosis Centre at University College London, who led the trial.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Aparna Nathan, PhD

    Aparna is a freelance science writer with a PhD in bioinformatics and genomics from Harvard University. She uses her multidisciplinary training to find both the cutting-edge science and the human stories in everything from genetic testing to space expeditions. She was a 2021 AAAS Mass Media Fellow at the Philadelphia Inquirer. Her writing has also appeared in Popular Science, PBS NOVA, and The Open Notebook.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies