Engineering Life

Cellular “tinkering” is critical for establishing a new engineering discipline that will lead to the next generation of technologies based on life’s building blocks.

| 11 min read

Register for free to listen to this article
Listen with Speechify
0:00
11:00
Share

© DREW MEEHAN

Engineering began as an outgrowth of the craftwork of metallurgical artisans. In a constant quest to improve their handiwork, those craftsmen exhaustively and empirically explored the properties—alone and in combination—of natural materials. The knowledge accumulated from this exploration and experimentation with natural building blocks eventually led to today’s modern technologies. We can now readily build things like super-lightweight cars and electrical circuits containing billions of transistors that encode highly sophisticated functions, using reliable design and manufacturing frameworks—a vast leap from artisanal craft.

Today, there is a parallel progression unfolding in the field of synthetic biology, which encompasses the engineering of biological systems from genetically encoded molecular components.1-7 The first decade or so of synthetic biology can be viewed as an artisanal exploration of subcellular material. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Timothy K. Lu

    This person does not yet have a bio.
  • Ahmad S. Khalil

    This person does not yet have a bio.
  • Caleb J. Bashor

    This person does not yet have a bio.

Published In

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Discover a serum-free way to produce dendritic cells and macrophages for cell therapy applications.

Optimizing In Vitro Production of Monocyte-Derived Dendritic Cells and Macrophages

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with Lipid Nanoparticles

Thermo Fisher Logo