Epigenetic Marks May Cause Brain Tumor Formation

Scientists established an epigenetic mouse model for glioma, providing insight into how epigenetics can initiate cancer.

Jennifer Zieba, PhD headshot
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Representation of a glioma cancer tumor as malignant cells break out
Researchers found novel ways to model the epigenetics of brain cancer in mice.
© iStock, wildpixel

Cancer therapies have come a long way since researchers designed the first radiation and chemotherapy treatments.1 In the past, most cancer researchers focused on finding a single cure for cancer. However, scientists found that the molecular disease mechanisms were highly variable both in different cancers and among the same cancer types. Genetic heterogeneity between and within tumors is now established for most cancers, but this does not explain all tumor progression cases, and cancer remains one of the most prevalent diseases in the country.

The field of epigenetics is now at the forefront of cancer research. Epigenetic changes such as DNA methylation and acetylation alter cell functions without disrupting the DNA code. These changes are common in tumors, but researchers have not yet defined their role in cancer.2 In a recent paper in Cell, researchers at Harvard Medical School revealed that changes in epigenetic methylation patterns directly caused brain tumor formation in mice.3

People think of cancer as a genetic disease…caused by mutations, typically. But there's also a lot of evidence that in all cancers the methylation of the DNA is really deranged.
-Bradley Bernstein, Harvard Medical School

“People think of cancer as a genetic disease…caused by mutations, typically. But there's also a lot of evidence that in all cancers the methylation of the DNA is really deranged,” said Bradley Bernstein, a cancer biologist at Harvard Medical School and the senior author of the study. “The problem is, it's really hard to show whether that's driving the tumor or not.”

To better understand cancer formation, Bernstein and Gilbert Rahme, now a professor at Stony Brook University and first author of the paper, studied the resulting epigenetic changes from mutations in isocitrate dehydrogenase (IDH) that cause hypermethylation in certain human brain tumors. “The question we wanted to answer was whether any epigenetic changes that are observed in these specific kinds of brain tumors can actually drive a normal cell to make it cancerous,” said Rahme.

Bernstein had previously examined human tissue from IDH mutant gliomas and found that hypermethylation at an insulator site negatively regulated the expression of PDGFRA, an oncogene frequently upregulated in gliomas.4 In the current work, the researchers used CRISPR-Cas9 gene editing to disrupt this insulator region in mouse oligodendrocyte progenitor cells (OPCs)—a cell population which may give rise to gliomas. The mutation allowed an OPC-specific enhancer to activate PDGFRA gene expression, mirroring the effect of blocking the site with methylation in human cells. In addition to increased PDGFRA expression, the disruption increased OPC proliferation.

Next, the researchers explored if hypermethylation in IDH mutant gliomas affected any tumor suppressors. The researchers found evidence of CDKN2A downregulation along with methylation at this tumor suppressor’s promoter in clinical samples. As a result, they hypermethylated this region in OPCs in vitro, which silenced the gene and increased OPC proliferation. After, Bernstein and his team disrupted both the PDGFRA insulator site and CDKN2A in the brains of mice. A week later, they examined the brains and found an abnormally large number of cells within. In combination with a mitogen that induced cell division, these mice developed malignant gliomas with OPC markers, indicating that OPCs were the cells of origin for these tumors.

This is one of the first studies to show the direct effects of specific epigenetic changes in progenitor cells that become cancerous in vivo. Additionally, the confirmation that OPCs give rise to glioma could help researchers make targeted treatments. "This is a very interesting study that advances our understanding of how DNA hypermethylation contributes to cancer initiation,” said Katherine Chiapinelli, a professor at George Washington University who not involved in the study. A recent phase 3 clinical trial showed that Vorasidinib, a drug that inhibits mutant IDH1 and IDH2, significantly extended progression free survival in patients.5 “In the future it would be interesting to see whether patients who respond to these inhibitors exhibit loss of methylation at the regions identified," Chiapinelli said.

References

1. DeVita VT, Jr., Rosenberg SA. Two hundred years of cancer research. N Engl J Med. 2012;366(23):2207-2214.

2. Baylin SB, Jones PA. A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer. 2011;11(10):726-734.

3. Rahme GJ, et al. Modeling epigenetic lesions that cause gliomas. Cell. 2023;186(17):3674-3685 e3614.

4. Flavahan WA, et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature. 2016;529(7584):110-114.

5. Mellinghoff IK, et al. Vorasidenib in IDH1- or IDH2-mutant low-grade glioma. N Engl J Med. 2023;389(7):589-601.

Keywords

Meet the Author

  • Jennifer Zieba, PhD headshot

    Jennifer Zieba, PhD

    Jen has a PhD in human genetics from the University of California, Los Angeles where she is currently a project scientist. She enjoys teaching and communicating complex scientific concepts to a wide audience.
Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide