Experimental Drug Relieves Blast-Related PTSD in a Rat Model of Traumatic Brain Injury

The compound, BCI-838, is already in human clinical trials as a possible treatment for depression.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

BCI-838 stimulates hippocampal neurogenesis in blast-exposed rats. Shown are sections of the hippocampal dentate gyrus stained for bromodeoxyuridine (red), which labels dividing progenitor cells, and the mature neuronal marker NeuN (green) from vehicle-treated controls (A), vehicle-treated, blast-exposed rats (B), and blast-exposed rats treated with a low dose (C) or a high dose (D) of BCI-838. Bromodeoxyuridine-labeled cells are indicated with arrows. Scale bar: 50 microns. GREG ELDERPeople who experience blast-related trauma to the brain, a condition that has become more and more common among combat veterans, can later experience depression and heightened anxiety, even in the absence of a psychological stressor. Patients are usually treated with medications (particularly antidepressants) and behavioral therapy, but these are often only partially effective.

In search of a more-effective drug, researchers have found that a compound that blocks certain glutamate receptors in the brain reverses many of the post-traumatic stress disorder (PTSD)-like symptoms that appear after rats endure a blast injury, they report in eNeuro this week (January 29). The drug, called BCI-838, is already in human clinical trials for the treatment of depression.

“What makes this paper a really nice addition to the literature is that it comes from a good group that over the years has honed and refined a very legitimate, biologically relevant, and battlefield-relevant animal model,” says David Cook, who studies neurodegenerative disease at the VA Puget Sound and the University of Washington and who was not involved in the study. “This compound, which has ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Viviane Callier

    Viviane was a Churchill Scholar at the University of Cambridge, where she studied early tetrapods. Her PhD at Duke University focused on the role of oxygen in insect body size regulation. After a postdoctoral fellowship at Arizona State University, she became a science writer for federal agencies in the Washington, DC area. Now, she freelances from San Antonio, Texas.

Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD
The Scientist Placeholder Image

Streamlining Microbial Quality Control Testing

MicroQuant™ by ATCC logo

Products

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies

waters-logo

How Alderley Analytical are Delivering eXtreme Robustness in Bioanalysis