Fastest-Ever Cell Contractions Observed in Primitive Invertebrate

The microscopic marine animal Trichoplax adhaerens may use rapid changes in cell shape to avoid being ripped apart by forces in the ocean.

abby olena
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: Trichoplax adhaerens has no muscles or neurons and no defined shape but still manages coordinated movement.
CREDIT: MANU PRAKASH

Most animals rely on changes in cell shape to move tissues around during development, but these alterations are usually slow and are rare in adult animals. In a case of extreme exception described in October in PNAS, the adult marine invertebrate Trichoplax adhaerens, a critter in the shape of a smashed wad of chewing gum no bigger than a piece of lint, consistently contracts and relaxes the cells on the top of its body at speeds nearly 10 times faster than ever before observed in an animal. Researchers discussed the published work, as well as ongoing studies into the purpose of the super fast cellular contractions, in three presentations at the American Society for Cell Biology (ASCB) annual meeting in San Diego this week.

It’s “astonishing” that a cell can contract ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • abby olena

    Abby Olena, PhD

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo