Flickering Neurons

Fluorescent calcium sensors in transgenic mice give a real-time readout of neuronal activity.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

CAUGHT IN THE ACT: Feng and colleagues recorded neuronal activity in mice engineered to express the calcium indicator GCaMP3 or GCaMP2.2 upon neuronal activation. Previously inserted cranial windows located over the motor cortex allowed the researchers to use fluorescent microscopy to examine the activation of specific neuron populations when the animals’ whiskers were stimulated by puffs of air. Green signals neuronal GCaMP3 expression; red marks neurons; and blue marks the nuclei of all brain cells.GEORGE RETSECK; NEURON IMAGE COURTESY OF QIAN CHEN AND GUOPING FENG

Observing the activity of specific neuronal circuits in the living brain can provide insight into how the brain functions normally and how it is affected by disease, psychological disorder, or injury. For that purpose, Guoping Feng, from the Massachusetts Institute of Technology, and colleagues have engineered transgenic mice whose neurons glow green when activated.

Neuronal activation leads to a rapid spike in intracellular calcium—a fact that prompted the development of fluorescent calcium dyes. But while these dyes provide an excellent readout of neuronal activity, says Feng, “you cannot put dyes into a specific population of neurons. . . . [And] you cannot image the same neurons over a long period of time.”

To get around these shortcomings, researchers have developed genetically encoded calcium indicators such ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery