For Whom the Bell Tolls

Eleanor Simpson on how dopamine helps rats learn and may lead humans to addiction.

Written byCristina Luiggi
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ANDRZEJ KRAUZE

Pavlovian conditioning is the classic example of associative learning. A dog that always hears a bell ring immediately prior to being fed will eventually salivate at the mere sound of the bell. At the heart of this type of learning is the feel-good neurotransmitter dopamine, which helps animals make positive associations to stimuli that herald pleasurable outcomes. But there’s a flip side to dopamine signaling: the development of addictive behaviors. Columbia University neuroscientist Eleanor Simpson discusses a study that pushes the boundaries of what’s known about dopamine, associative learning, and addiction (Nature, 469:53-57, 2011).

The Scientist: How does dopamine help the brain form associations between signals and the rewards that follow?

Eleanor Simpson: One of the major theories of how dopamine is involved in learning ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH