Fuel Gauge

An optical reporter quantitatively measures the ATP demands of presynaptic neurons.

Written byAnna Azvolinsky
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Human brain cells use about one-fifth of the body’s energy. Scientists assume that neurons are energy hogs, but know little about how they manage those energy demands, says Timothy Ryan, a biochemist and neuroscientist at Weill Cornell Medical College. The energy needs of presynaptic nerve terminals must be addressed locally, as the synapse can be as far away as one meter from the cell body. Together with colleagues, Ryan has engineered an optical reporter system called Syn-ATP that, when expressed in neurons, can directly measure the number of ATP molecules specifically located at presynaptic nerve terminals.

“Visualizing cellular biochemical processes is one of the most difficult and exciting areas of neurobiology, and this technique is a successful example of this approach,” says neurobiologist Pietro De Camilli of Yale University. “It’s a powerful new tool.”

Using the reporter in cultured rat hippocampal cells, the researchers found that measured levels of ATP ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile

Published In

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery