Fungus Repurposed a Bacterial Gene to Sense Gravity with Crystals

Rather than getting a gene for its original function, a horizontal gene transfer provides the raw material for evolutionary innovation.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Phycomyces fruiting bodies with spore-containing spheres at their tips. Inset: An OCTIN crystal, 5 microns acrossTU ANH NGUYENWhen food runs low, the pin mold fungus, Phycomyces blakesleeanus, sends out spindly fruiting bodies topped with spores. The fungus grows in dung, and needs to figure out which way is up to spread its spores and reproduce. The trick it evolved is to sense gravity using large protein crystals that fall to the bottom of cell vacuoles. Just how the fungus acquired this ability was a mystery, but new research published in PLOS Biology today (April 24) shows that it originated in bacteria, which, curiously, can’t form these large crystals.

The genetic gift that encodes the crystals is an unusual case of what’s known as horizontal gene transfer (HGT), an exchange of DNA between organisms, says Sara Branco, a mycologist at Montana State University who was not involved in the study. Typically, HGT provides an immediate gain of function to the recipient—like swapping antibiotic resistant genes among bacteria—but this gene doesn’t have any known function related to gravitropism in bacteria. The result shows “that [HGT] is just another way to get raw material for evolution,” she says.

It kind of flips upside down our general perception of why horizontal gene transfer is happening.—Jason Slot,
Ohio State University

Earlier work by scientists discovered the Phycomyces solution for sensing gravity in 1999, but the evolutionary origin of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Viviane Callier

    Viviane was a Churchill Scholar at the University of Cambridge, where she studied early tetrapods. Her PhD at Duke University focused on the role of oxygen in insect body size regulation. After a postdoctoral fellowship at Arizona State University, she became a science writer for federal agencies in the Washington, DC area. Now, she freelances from San Antonio, Texas.

Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD
The Scientist Placeholder Image

Streamlining Microbial Quality Control Testing

MicroQuant™ by ATCC logo

Products

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies

waters-logo

How Alderley Analytical are Delivering eXtreme Robustness in Bioanalysis