Fungus Repurposed a Bacterial Gene to Sense Gravity with Crystals

Rather than getting a gene for its original function, a horizontal gene transfer provides the raw material for evolutionary innovation.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Phycomyces fruiting bodies with spore-containing spheres at their tips. Inset: An OCTIN crystal, 5 microns acrossTU ANH NGUYENWhen food runs low, the pin mold fungus, Phycomyces blakesleeanus, sends out spindly fruiting bodies topped with spores. The fungus grows in dung, and needs to figure out which way is up to spread its spores and reproduce. The trick it evolved is to sense gravity using large protein crystals that fall to the bottom of cell vacuoles. Just how the fungus acquired this ability was a mystery, but new research published in PLOS Biology today (April 24) shows that it originated in bacteria, which, curiously, can’t form these large crystals.

The genetic gift that encodes the crystals is an unusual case of what’s known as horizontal gene transfer (HGT), an exchange of DNA between organisms, says Sara Branco, a mycologist at Montana State University who was not involved in the study. Typically, HGT provides an immediate gain of function to the recipient—like swapping antibiotic resistant genes among bacteria—but this gene doesn’t have any known function related to gravitropism in bacteria. The result shows “that [HGT] is just another way to get raw material for evolution,” she says.

It kind of flips upside down our general perception of why horizontal gene transfer is happening.—Jason Slot,
Ohio State University

Earlier work by scientists discovered the Phycomyces solution for sensing gravity in 1999, but the evolutionary origin of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Viviane Callier

    Viviane was a Churchill Scholar at the University of Cambridge, where she studied early tetrapods. Her PhD at Duke University focused on the role of oxygen in insect body size regulation. After a postdoctoral fellowship at Arizona State University, she became a science writer for federal agencies in the Washington, DC area. Now, she freelances from San Antonio, Texas.

Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
Explore polypharmacology’s beneficial role in target-based drug discovery

Embracing Polypharmacology for Multipurpose Drug Targeting

Fortis Life Sciences
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

BIOVECTRA

BIOVECTRA is Honored with 2025 CDMO Leadership Award for Biologics

Sino Logo

Gilead’s Capsid Revolution Meets Our Capsid Solutions: Sino Biological – Engineering the Tools to Outsmart HIV

Stirling Ultracold

Meet the Upright ULT Built for Faster Recovery - Stirling VAULT100™

Stirling Ultracold logo
Chemidoc

ChemiDoc Go Imaging System ​

Bio-Rad