Genetic Screen Predicts T-Cell Lymphoma Aggression

Sequencing of a single gene can spot patients with a dangerous form of mycosis fungoides better than other prognostic tests.

kerry grens
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Painting of a woman with mycosis fungoidesST. BARTHOLOMEW'S HOSPITAL ARCHIVES & MUSEUM, WELLCOME COLLECTIONA form of T-cell lymphoma called mycosis fungoides won’t kill the vast majority of patients if found early enough. But for about 20 percent of people with the cancer, the disease shrugs off treatments, progresses rapidly, and threatens patients’ lives. Reporting today (May 9) in Science Translational Medicine, researchers have been able to distinguish between the two types of mycosis fungoides (MF) by sequencing a single gene called TCRB, which encodes a receptor on T cells.

“While more work needs to be done, we think this approach has the potential to prospectively identify a subgroup of patients who are destined to develop aggressive, life-threatening disease,” study coauthor Thomas Kupper of Brigham and Women’s Hospital in Boston says in a press release, “and treat them in a more aggressive fashion with the intent to better manage, and ideally cure, their cancer.”

Although MF is the most common type of cutaneous T-cell lymphoma (blood cancer that results in skin lesions), MF itself isn’t that common, affecting one of out every 100,000–350,000 people, according to the National Institutes of Health. Over the course of 15 years, Kupper and his colleagues collected samples from the skin lesions of hundreds of patients and sequenced TCRB in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • kerry grens

    Kerry Grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
Explore polypharmacology’s beneficial role in target-based drug discovery

Embracing Polypharmacology for Multipurpose Drug Targeting

Fortis Life Sciences
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit

BIOVECTRA

BIOVECTRA is Honored with 2025 CDMO Leadership Award for Biologics

Sino Logo

Gilead’s Capsid Revolution Meets Our Capsid Solutions: Sino Biological – Engineering the Tools to Outsmart HIV

Stirling Ultracold

Meet the Upright ULT Built for Faster Recovery - Stirling VAULT100™

Stirling Ultracold logo