Gestational Malnutrition Affects Offspring’s Sperm

Mice undernourished during pregnancy can transmit the effects of such nutritional stress to their sons’ germ cells, epigenetically.

Written byAnna Azvolinsky
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, SEWERYN OLKOWICZ The effects of malnutrition in the late stages of a female mouse’s pregnancy can produce epigenetic changes in the sperm of her male offspring. While prenatal undernourishment had previously been shown to result in metabolic disease for two subsequent generations, a study published today (July 10) in Science is the first to demonstrate the extent to which an expecting mother’s nutrition can affect the methylation of DNA in the germ cells of her offspring.

“This is a fairly compelling demonstration that the epigenome is plastic to some extent, able to be modified by the environment,” said Oliver Rando, who studies epigenetic inheritance at the University of Massachusetts Medical School, but was not involved in the work. “This is probably one of the more expansive demonstrations of this.”

Geneticist Anne Ferguson-Smith from the University of Cambridge in the U.K., along with endocrinologist Mary-Elizabeth Patti at the Joslin Diabetes Center in Boston and their colleagues, decreased by half the caloric intake of mice during their last week of pregnancy, when epigenetic reprogramming of male germ cells occurs. Assessing the genome-wide methylation state of the sperm of the first-generation sons of undernourished mothers, the researchers found that these sperm had 111 hypomethylated ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH