Getting Your Sugar Fix

A guide to glycan microarrays

| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

RICHARD CUMMINGSLipids and proteins on the surfaces of cells are bedecked with sugar chains, which determine how cells develop, adhere to one another, and communicate. Bacteria and viruses glom onto these complex linear or branched oligosaccharides, called glycans, to infect cells. The immune system fights back, learning to recognize microbes’ sugar coatings and mounting both an innate and an adaptive defense.

Despite glycans’ fundamental importance to biology, they remain poorly understood compared to DNA and proteins. Because of their structural complexity, glycans are arduous to manufacture. And unlike DNA, they are impossible to clone and amplify, so quantities are limited.

But one technology initially developed for understanding genetic material has proven a perfect fit for glycobiology: the microarray. The first glycan microarrays came onto the scene in 2002, just seven years after the advent of microarrays to study gene expression.

Glycan microarrays consist of small quantities of a variety of natural or synthetic oligosaccharides affixed to a surface. Researchers use the arrays to identify proteins, cells, and microbes that bind to the sugars. Because printed microarrays require minuscule quantities of sugars, they made it possible, for ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Kate Yandell

    This person does not yet have a bio.

Published In

Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit