Gut Microbes Trigger Malaria-Fighting Antibodies

A carbohydrate antigen found on cells of E. coli and other species prompts a potent immune response against malaria-causing parasites in mice.

Written byMolly Sharlach
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A Plasmodium berghei sporozoite expressing GFP (green) produces the α-gal carbohydrate antigen (red). DNA is stained with DAPI (blue).BAHTIYAR YILMAZ

Up to 5 percent of the antibodies circulating in the blood of healthy adults are directed against the carbohydrate antigen Galα1-3Galb1-4GlcNAc-R, also known as α-gal. This molecule decorates the surfaces of many human-associated bacteria, as well as protozoan pathogens, and antibodies against it are cytotoxic to these microbes in vitro.

Now, scientists at the Instituto Gulbenkian de Ciência in Portugal and their colleagues have established an in vivo role for anti-α-gal antibodies in protecting mice against malaria infection. A team led by Bahtiyar Yilmaz and Miguel Soares has now shown that E. coli bacteria colonizing the guts of mice elicit the production of anti-α-gal antibodies. High levels of anti-α-gal antibodies are also linked to malaria resistance in humans, the researchers noted today (December 4) in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH