Half-Life of DNA Revealed

Researchers measure how long it takes for DNA from bone to degrade, confirming that genetic information from dinosaurs could not last to the present day.

Written byDan Cossins
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Wikimedia Commons, Christoph Bock, Max Planck Institute for InformaticsFew researchers ever believed that DNA could survive long enough to make Jurassic Park a reality, and yet there have been no reliable models for how long the molecule takes to degrade. But a study published this week (October 10) in the Proceedings of the Royal Society B estimates that DNA from bone has a half-life of 521 years: after that amount of time, half of the nucleotide bonds that hold it together are broken, and after another 521 years, those bonds are cut in half again, and so on.

To determine this rate of decline, an international team of paleogenetisicts examined DNA samples from 158 leg bones belonging to three species of Moa, extinct giant birds from New Zealand. The bones ranged from 600 to 8,000 years old, but all had been preserved in almost identical conditions, which meant the researchers could make comparisons between the ages of the specimens and the state of the DNA.

Based on their calculations, the team predicted that even under perfect conditions for DNA preservation, it would take a maximum of 6.8 million years for every bond to be destroyed. And even before that time—after around 1.5 million years—the remaining strands of DNA would be too short to be readable. So a dinosaur bone, which would be at ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH