Harnessing Single-Cell Multi-Omic Energy States for Integrated Cancer Biology

Discover how scientists use multi-omic approaches to identify functional changes that lead to cancer cell drug resistance and devise new treatment strategies.

Event Details:Harnessing Single-Cell Multi-Omic Energy States for Integrated Cancer BiologyDate(s):

FREE Webinar

Tuesday, February 16, 2021
11:30 AM - 1:00 PM, Eastern Standard Time

Register Now

The development of drug resistance is an almost universal characteristic of cancers, and is an outstanding challenge in the fields of tumor biology and clinical oncology. While there have been many studies focused on genomic contributions to resistance in cancer cells, recent studies have shown that genetically homogeneous cells can undergo adaptive cell state changes leading to the rapid emergence of drug-tolerant phenotypes. The heterogeneous nature of tumors, coupled with the functional and metabolic changes that accompany adaptive resistance development, suggests that multi-omic, single cell approaches have the potential to provide deep insights into the cell state changes that lead to adaptive resistance, and may provide hypotheses for new therapies and therapy combinations that can prevent resistance development. IsoPlexis’ multi-omic (metabolomics + functional proteomics) energy state application provides a critical and uniquely capable tool ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide