Herpes Vax Shows Promise

A vaccine candidate against herpes simplex virus type 2 provides complete protection against infection in mice, with no evidence of latent virus.

Written byJef Akst
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Electron micrograph of herpes simplex virusFLICKR, NIAIDResearchers have traditionally designed vaccines against herpes simplex virus type 2 (HSV-2) to elicit antibodies that targeted the viral surface protein called glycoprotein D (gD-2), which the virus uses to enter host cells. But by deleting gD-2 from the viral genome, William Jacobs of the Albert Einstein College of Medicine and his colleagues not only rendered the virus unable to infect cells, they were able to develop a vaccine that forced the murine immune system to produce antibodies that recognize different viral targets.

“We had a hunch that gD-2 might be masking other viral antigens, and that by removing this dominant protein we would expose those previously masked antigens to the immune system,” Jacobs said in a statement.

Using the gD-2–lacking virus to immunize mice, the researchers elicited complete protection against wild-type HSV-2, both when the animals were challenged intravaginally or through the skin. Importantly, the researchers, who published their results this week (March 10) in eLife, found no evidence of latent HSV-2 lingering in the vaccinated mice.

“A dominant protein like that is like a loud person in a room; other people speaking can’t be heard,” coauthor Betsy Herold, a pediatric infectious disease doctor at Einstein, told Science News, drawing the analogy to gD-2 and other viral ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies