Hit Parade

Cell-based assays are popular for high-throughput screens, where they strike a balance between ease of use and similarity to the human body that researchers aim to treat.

| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

WATCHING WORMS: Adult Ancylostoma caninum hookworms writhing in xCELLigence E-plate wells. Circular electrodes covering the bases of the wells measure changes in electrical impedance as the worms move in response to different drugs.COURTESY OF MICHAEL SMOUT

Biochemical drug screens were the norm a decade or so ago, but they didn’t always lead to cures. Targets that looked good in the test tube often failed in animals or people, either because of toxicity or because the drugs were processed differently in the body than they were in a pure chemical interaction. Modern scientists now look to cell-based assays as a drug-development tool that ups the chances of picking a winner.

Although studying medicines in cells is still a far cry from testing in an intact organism, “it’s the first level in biology where you actually have a whole working system,” says R. Terry Dunlay, CEO of IntelliCyt Corporation in Albuquerque, New Mexico. With cell culture, researchers can get as close as possible ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Amber Dance

    Amber Dance is an award-winning freelance science journalist based in Southern California. After earning a doctorate in biology, she re-trained in journalism as a way to engage her broad interest in science and share her enthusiasm with readers. She mainly writes about life sciences, but enjoys getting out of her comfort zone on occasion.

Published In

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio