HIV DNA Circularizes to Bypass CRISPR-Based Treatments

CRISPR-mediated removal of HIV can create small, infectious DNA molecules.

Written byNele Haelterman, PhD
| 3 min read
3D virus cells attacking a DNA strand
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

CRISPR-Cas9 technology holds promise for treating inherited disorders, but scientists are also exploring its utility for excising integrated viruses. Early reports have demonstrated that CRISPR effectively excises integrated human immunodeficiency virus type 1 (HIV) from cells.1,2 For Michele Lai from the University of Pisa, these studies raised an important question: what happens to the excised DNA?

He set out to answer this question, and recently published in the Journal of Virology that some of the excised viral DNA molecules form stable DNA circles that can reintegrate into the genome.3 This phenomenon may pose a challenge to those working on CRISPR-based HIV treatments.

Even if CRISPR works in 100 percent of T cells, you would still have a good number of cells where the [plasmids] can start the infection over.
—Mauro Pistello, University of Pisa

“In this context of genomic instability, the cell doesn't understand what is the DNA of the cell ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Nele Haelterman, PhD Headshot

    Nele earned her PhD in developmental biology from Baylor College of Medicine. During her graduate and postgraduate training, she developed gene editing technologies for characterizing human disease genes in flies and mice. Nele loves combining science communication and advocacy. She runs a blog for early career scientists and promotes open, reproducible science. In July 2021, Nele joined The Scientist’s Creative Services Team as an assistant science editor.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies