How Transposons Shaped Pregnancy

A mass migration of mobile regulatory elements increased the expression of thousands of genes in the uterus during the evolution of pregnancy.

Written byKate Yandell
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

FLICKR, TATIANA VDBDuring the evolution of pregnancy, thousands of transposons—pieces of DNA that copy and reinsert themselves throughout the genome—migrated to regulate the expression of pregnancy-related genes, according to a paper published today (January 29) in Cell Reports. Genes involved in responding to hormones, maternal-fetal communication, and immune tolerance increased in expression, while expression decreased for genes involved in ion transport, which is essential for the formation of mineralized eggshells.

“It seems that we’re getting closer to an understanding of the major events that occurred in the evolution of mammalian pregnancy,” said Derek Wildman, a professor of molecular and integrative physiology at the University of Illinois at Urbana-Champaign who was not involved in the study.

This work “adds to the evidence that transposable elements are major forces of evolution and rapid evolution, particularly in the reproductive organs,” said Julie Baker, a geneticist at Stanford University in Palo Alto, California, who also was not involved in the study. “I think we’re going to see a lot more attention paid to the evolution of transposable elements and their function.”

Researchers from the University of Chicago and their colleagues first sequenced RNA expressed in the uteruses of animals ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH