How Vampire Bats Find Veins

Heat-sensing protein channels in vampire bats allow the flying mammals to find the best place to sink their teeth into their prey.

Written byJessica P. Johnson
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

The common vampire bat (Desmodus rotundus)PASCUAL SORIANO

Researchers have discovered an infrared-sensing protein channel that allows vampire bats to identify the hottest part of the animal—veins close to the skin’s surface that carry 38 degree-Celsius (100° F) blood, and presumably the best spot for feeding.

The channel is a variant of TRPV1, a heat-sensing protein channel that is triggered by high temperatures that could potentially cause injury, according to the study published today (August 3) in Nature, and is distinct from the heat sensor used by snakes—the only other non-insect animals that are known to detect heat by sensing infrared radiation.

“Infrared [detection] allows these guys, in pitch black, to hunt down warm-blooded prey,” said zoologist Bill Schutt, assistant professor at Long Island University, who was not involved in the research. Here, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH