Ideal Patients, 1896–Present

Advances in imaging technology over the last century have allowed increasingly sophisticated glimpses into the ancient processes of mummification.

Written byAmy Schleunes
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © ISTOCK.COM, CHRISTOPHERARNDT

They don’t move, they don’t complain, and they’re impervious to X-ray damage. In other words, mummies are “a perfect subject for medical radiography,” according to conservator JP Brown of Chicago’s Field Museum of Natural History.

Scientists figured this out early on: just months after Wilhelm Roentgen’s discovery of X-rays in the fall of 1895, a physicist, Walter Koenig, captured the first radiographic images of mummified remains at the Physical Society of Frankfurt-am-Main. Up until that point, studying mummies had mostly meant unwrapping them, a process that Brown notes is “necessarily destructive.” A few decades later, the Field Museum became a pioneer of mummy imaging. Edward Jerman of the Victor X-Ray Corporation of Chicago volunteered his services and radiographed 32 ancient Egyptian and Peruvian mummies in the museum’s collection with what curator Berthold Lauer called “such gratifying and convincing results” that museum president Stanley Field opened a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • A former intern at The Scientist, Amy studied neurobiology at Cornell University and later earned her MFA in creative writing from the University of Iowa. She is a Los Angeles–based writer, editor, and communications strategist who collaborates on nonfiction books for Harper Collins and Houghton Mifflin Harcourt, and also teaches writing at Johns Hopkins University CTY. Her favorite projects involve sharing the insights of science and medicine.

    View Full Profile

Published In

April 2020

Exercise for Cancer

Molecular clues link physical activity to improved patient outcomes

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH