Ideal Patients, 1896–Present

Advances in imaging technology over the last century have allowed increasingly sophisticated glimpses into the ancient processes of mummification.

Written byAmy Schleunes
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © ISTOCK.COM, CHRISTOPHERARNDT

They don’t move, they don’t complain, and they’re impervious to X-ray damage. In other words, mummies are “a perfect subject for medical radiography,” according to conservator JP Brown of Chicago’s Field Museum of Natural History.

Scientists figured this out early on: just months after Wilhelm Roentgen’s discovery of X-rays in the fall of 1895, a physicist, Walter Koenig, captured the first radiographic images of mummified remains at the Physical Society of Frankfurt-am-Main. Up until that point, studying mummies had mostly meant unwrapping them, a process that Brown notes is “necessarily destructive.” A few decades later, the Field Museum became a pioneer of mummy imaging. Edward Jerman of the Victor X-Ray Corporation of Chicago volunteered his services and radiographed 32 ancient Egyptian and Peruvian mummies in the museum’s collection with what curator Berthold Lauer called “such gratifying and convincing results” that museum president Stanley Field opened a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • A former intern at The Scientist, Amy studied neurobiology at Cornell University and later earned her MFA in creative writing from the University of Iowa. She is a Los Angeles–based writer, editor, and communications strategist who collaborates on nonfiction books for Harper Collins and Houghton Mifflin Harcourt, and also teaches writing at Johns Hopkins University CTY. Her favorite projects involve sharing the insights of science and medicine.

    View Full Profile

Published In

April 2020

Exercise for Cancer

Molecular clues link physical activity to improved patient outcomes

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery