Identical Twins Carry Distinctive Epigenetic Marks: Study

Researchers found more than 800 sites in the genome where the twins bore the same chemical tags.

young woman smiling
| 2 min read
two sets of twins sitting

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: Two sets of identical twins © ISTOCK.COM, _JURE

Sets of identical twins famously have much in common with one another. In a Dutch study published September 28 in Nature Communications, scientists find that they also have something in common with other identical twins the world over: a set of matching marks on their DNA. The researchers studied around 6,000 pairs of twins of varying ages from around the world, analyzing hundreds of thousands of sites on their genomes. Their finding of 834 sites in the genome with marks distinct to identical, but not fraternal, twins could provide clues to how identical twins come about, researchers say.

While the basics of how identical twins originate is clear, the mystery lies in why. Identical twins arise from a single fertilized egg, or zygote, splitting into embryos with duplicate DNA, but what causes the split remains unknown. Zygote splitting was once thought ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • young woman smiling

    Chloe Tenn

    Chloe Tenn is a graduate of North Carolina State University, where she studied neurobiology, English, and forensic science. Fascinated by the intersection of science and society, she has written for organizations such as NC Sea Grant and the Smithsonian. Chloe also works as a freelancer with AZoNetwork, where she ghostwrites content for biotechnology, pharmaceutical, food, energy, and environmental companies. She recently completed her MSc Science Communication from the University of Manchester, where she researched how online communication impacts disease stigma. You can check out more of her work here.

Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit