Identifying Antibodies that Target Membrane Proteins in Their Native Conformations

A new mammalian display platform enhances antibody discovery for challenging protein targets.


Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Membrane proteins are important therapeutic targets as they transduce signals into cells, transport molecules, bind to surfaces, and catalyze reactions. However, researchers face challenges when developing antibody-based drugs targeting membrane proteins, such as monoclonal antibody and chimeric antigen receptor (CAR) T cell therapies, because the proteins are embedded within the membrane, leaving only a few surface-exposed epitopes accessible to therapeutics.

To discover potentially therapeutic antibodies, researchers employ antibody display systems where antibody fragment libraries are inserted into cells or phages that then “display” the proteins on their surfaces. Early display systems used microorganisms to express mammalian proteins. Newer mammalian systems improve upon bacteria, yeast, and phage display by producing antibody fragments via endogenous eukaryotic secretion machinery.1 This ensures that mammalian antibodies fold properly and are compatible with downstream mammalian cell production systems.

Typical mammalian display systems can only screen antibody libraries with up to 107 variants due to low transfection ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo