Identity-Shifting Brain Cells

Cortical interneurons in mice exhibit activity-dependent alterations to their characteristic firing patterns.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Interneuron within the cortexNATHALIE DEHORTERThe electrical activity of a neuron is considered a fundamental feature of its identity. But new research reveals this attribute is not necessarily fixed, at least in murine cortical inhibitory interneurons. In a paper published in Science today (September 10), researchers show that increasing or decreasing interneuron activity leads to molecular changes that ultimately hasten or delay the cells’ electrical discharges.

“In the past, the identities and properties of neurons were thought to be primarily determined by genetic programs during development and once these cell identities had been established it was thought to be pretty much static,” said neuroscientist Attila Losonczy of Columbia University who was not involved in the work. “This study provides compelling new evidence that even some basic functional properties of neurons, specifically the excitability and firing activity of cortical inhibitory neurons, are profoundly regulated by experience-driven and activity-dependent mechanisms in the adult brain.”

Unlike sensory and motor neurons, which connect the central nervous system to the body’s organs and tissues, interneurons form connections between neurons. The majority of interneurons are inhibitory, meaning they dampen the excitability of other neurons, but within this ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH