Image of the Day: Hide and Seek

Neurons of the embryonic subplate don’t die as scientists had thought.

Written bySukanya Charuchandra
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

ABOVE: The subplate (bright blue layer above the orange cells) sits directly below the developing human cortex.
LABORATORY OF STEM CELL BIOLOGY AND MOLECULAR EMBRYOLOGY AT THE ROCKEFELLER UNIVERSITY

At times a predominant layer of the developing brain, the subplate disappears in the adult human brain—or so researchers believed. In findings published in Cell Stem Cell on June 21, scientists propose that neurons from the human subplate, which underlies the tissue that will become the cortex, relocate into the cortex.

The researchers found high levels of a protein, known to help cells migrate into the cortex, in stem cell–derived subplate neurons.

These relocated subplate cells may be associated with neurological diseases. “A lot of the genes associated with autism are first expressed in the subplate,” M. Zeeshan Ozair, a coauthor on the paper, says in a statement. “And if subplate neurons don’t die but instead become part of the cortex, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH