Image of the Day: 3-D Nanofibers

Researchers created a nanofibrous scaffold to see how it supports cell growth.


Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Cardiac muscle cells (purple) envelop a 3-D model of nanofibers (pink). V. BALASHOV ET AL.

Researchers at the Moscow Institute of Physics and Technology (MIPT) created a 3-D model of synthetic nanofibers to learn how to engineer more efficient scaffolds for biomedical applications. The researchers reported in Acta Biomaterialia last week (March 2) that cardiac muscle cells, called cardiomyocytes, interface with nanofibers differently than do fibroblasts—connective tissue cells.

“[W]e discovered that during their development on a nanofibrous scaffold, cardiomyocytes wrap the fibers on all sides creating a ‘sheath’ structure in the majority of cases,” says study coauthor Konstantin Agladze, a physicist at MIPT, in a press release. “Fibroblasts, by contrast, have a more rigid structure and a much smaller area of interaction with the substrate, touching it only on one side.” This finding could help scientists engineer more effective nanofiber ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio