Imprinting Diversity

Joachim Messing talks about how genomic imprinting may be a strong driver of diversity.

Written byCristina Luiggi
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Sexual reproduction yields offspring with two copies of the same gene, one from each parent; but in an epigenetic phenomenon known as genomic imprinting, only one copy of certain genes is turned on or off, depending on which parent contributed it. Imprinted genes are stamped by patterns of DNA methylation or histone modification during gamete formation, and their activation or inactivation is then passed on to offspring. Previously, approximately 100 genes were thought to be imprinted in mammals. But Rutgers University molecular biologist and F1000 Member Joachim Messing, discusses a recent paper that found many more imprinted genes in mammals, suggesting this may be a major form of epigenetic regulation (Science, 329:643-48, 2010).

The Scientist: What’s an evolutionary justification for the parental bias in gene ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH