Inadequate Myelination of Neurons Tied to Autism: Study

A mouse model of autism and postmortem brains of autistic individuals showed a lack of mature oligodendrocytes and less myelination than controls.

Written byLisa Winter
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: © ISTOCK.COM, WILDPIXEL

Insufficient myelination, likely caused by a lack of mature oligodendrocytes, is linked to autism spectrum disorder, according to a study in mice and postmortem human brains published yesterday (February 3) in Nature Neuroscience.

Myelin, the fatty substance that sheaths and insulates the axons of neurons, is responsible for aiding the quick delivery of signals throughout the brain. Too little myelin leaves the cells vulnerable to damage (as with multiple sclerosis), while too much can muddle the message. Oligodendrocytes (OL) are the cells that control myelination. Previous research has shown that myelin is typically thinner in those with autism spectrum disorder (ASD), while the current study explores the source of the problem.

While studying mouse brains for genetic mutations that cause Pitt-Hopkins syndrome, an autism-related genetic disorder, the team noticed irregular myelination and inconsistent expression of Tcf4, a gene that regulates OL activity.

Turning their attention to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Lisa joined The Scientist in 2017. As social media editor, some of her duties include creating content, managing interactions, and developing strategies for the brand’s social media presence. She also contributes to the News & Opinion section of the website. Lisa holds a degree in Biological Sciences with a concentration in genetics, cell, and developmental biology from Arizona State University and has worked in science communication since 2012.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies