Infographic: How to Catch Cheating Athletes

Anti-doping agencies are tracking levels of various molecules in athletes’ blood and urine over time to increase their ability to detect drug misuse.

Written byAnna Azvolinsky
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

The World Anti-Doping Agency recently developed and instituted the Athlete Biological Passport (ABP), a tools that helps anti-doping organizations track levels of various molecules in competitive athletes. In 2009, WADA published formal guidelines on how to conduct standardized testing for evidence of blood doping, including how to track athletes’ longitudinal data as part of the ABP’s blood module, which includes 14 bloodborne biomarkers to indicate misuse of erythropoietin (EPO), blood transfusions, or other forms of doping using blood samples.

In 2014, WADA added the steroidal module to track the levels of testosterone and other steroids. These sets of tests can detect exogenously administered steroids, their various metabolites, precursors, and related molecules to better nail down doping as well as other anabolic agents. Tracking these markers over time is also a way to identify samples that may have been tampered with or exchanged with the urine sample of another individual, as ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile

Published In

September 2019

Our Inner Neanderthal

Ancient secrets in the human genome

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies