Infographic: Engineering Microbiomes with CRISPR

Researchers are using CRISPR for precise genetic manipulation of human-associated microbes as a promising avenue for improving human health.

Black and white portrait by Mariella Bodemeier Loayza Careaga, PhD
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

The microbes that make up an organism’s microbiome have a range of effects on its health. Scientists use CRISPR systems to genetically manipulate specific bacterial species, for instance those found in the mouse gut microbiome, to find new ways to promote health and treat disease.

TK
© nanoclustering.com

(1) Scientists select a specific microbe, such as a bacterial species, for CRISPR-mediated genetic manipulation.

(2) Researchers deliver CRISPR system components using different methods, including conjugation, transformation by heat shock or electroporation, and transduction by bacteriophages.

(3) Scientists directly provide the sequence encoding all CRISPR components, a Cas protein and a guide RNA, into the target microbe.

(4) Alternatively, scientists co-opt the bacteria’s endogenous CRISPR machinery and supply only the guide RNA.

(5) Scientists edit the microbe’s DNA or cause irreparable breaks that lead to DNA degradation.

TK
© nanoclustering.com

(6) In bacteria, scientists modify either the plasmid or chromosomal DNA of the microbe. In complex microbial communities such as the gut microbiome, CRISPR-engineered bacteria have multiple applications.

(7) Engineered probiotic bacteria produce modulatory molecules to fight diseases and restore the intestinal flora.

(8) As an antimicrobial, CRISPR self-targets the DNA of a pathogenic bacterial strain.

(9) By CRISPR editing commensal gut bacteria, scientists modulate the effects of these microbes on the microbiome and influence disease related processes such as inflammation.

Read the full story.

Keywords

Meet the Author

  • Black and white portrait by Mariella Bodemeier Loayza Careaga, PhD

    Mariella Bodemeier Loayza Careaga, PhD

    Mariella is an assistant editor at The Scientist. She has a background in neuroscience, and her work has appeared in Drug Discovery News and Massive Science.

Published In

Spring 2024 cover
Spring 2024

Turning on the Bat Signal

Research into bat immune systems may help keep humans safe from viral attacks.

Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio