Interfering with Resistance

Drug efficacy and resistance mechanisms shine a light on how drugs enter cells, which could facilitate the development of new sleeping-sickness treatments.

Written byHannah Waters
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

TRYPANOSOMA BRUCEI PROTOZOA: The parasite, shown here in purple, causes sleeping sickness, a disease that starts out as fever and inflammation and progresses to neurological symptoms such as confusion and disrupted sleep cycles, eventually leading to coma and death. WIKIMEDIA COMMONS, ALAN R. WALKER

S. Alsford et al., “High-throughput decoding of antitrypanosomal drug efficacy and resistance,” Nature, 482:232-36, 2012.

Trypanosoma brucei, the single-cell protozoan that causes the tropical disease sleeping sickness, is becoming increasingly resistant to the few drug treatments available. Using RNA interference (RNAi), David Horn of the London School of Hygiene and Tropical Medicine and colleagues identified 55 genes that contribute to drug susceptibility and resistance.

Horn used a library of plasmids to create around 750,000 T. brucei clones, each with one of the bug’s 7,500 or so genes knocked down using RNAi. He then treated the pool with five different sleeping sickness drugs, selecting for those clones that gained resistance by losing a gene. Using next-generation sequencing, the team identified 55 susceptibility-related genes in the survivors, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH