Isotopic Bomb Traces Are a Boon to Biological Dating

The decades-old signature of nuclear testing can reveal the ages of organisms, or even individual cells.

Written byShawna Williams
| 6 min read
a photograph of a Greenland shark

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

ABOVE: A Greenland shark
WIKIMEDIA, HEMMING1952

Jonas Frisén wanted to answer a question: How often, if at all, do brain cells in the hippocampus turn over in adult humans? But it was clear to him that the usual plan of attack for addressing such a question in lab animals—namely, feeding them a radioactive tracer and then examining their tissues postmortem—couldn’t be adapted to human subjects. “You will not be able to find a healthy volunteer to first drink a toxin and then donate the part of their brain to you, of course,” he explains.

Mulling over the problem, the stem cell researcher at the Karolinska Institute in Sweden considered how archeologists who also can’t feed their subjects radioactive tracers address dating of samples. Archaeologists often tests the ratio of carbon isotopes to determine approximate dates when an organism was alive, taking advantage of the fact that 14C decays at a measurable ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Shawna was an editor at The Scientist from 2017 through 2022. She holds a bachelor’s degree in biochemistry from Colorado College and a graduate certificate in science communication from the University of California, Santa Cruz. Previously, she worked as a freelance editor and writer, and in the communications offices of several academic research institutions. As news director, Shawna assigned and edited news, opinion, and in-depth feature articles for the website on all aspects of the life sciences. She is based in central Washington State, and is a member of the Northwest Science Writers Association and the National Association of Science Writers.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies