Keeping CRISPR in Check

In bacteriophage genomes, researchers find three anti-CRISPR proteins that naturally inhibit CRISPR-Cas9 in one bacterial species and can do the same in human cells.

Written byAnna Azvolinsky
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Cas9 protein structure from Staphylococcus aureus WIKICOMMONS, THOMAS SPLETTSTOESSER A team of scientists that previously identified genes within bacteriophage genomes that code for anti-CRISPR proteins has now discovered phages that harbor an antidote to the Cas9 enzyme that is a key component of the predominant CRISPR system that is today used as a gene-editing tool. The team, led by the University of Toronto’s Alan Davidson, described three bacteriophage-encoded, anti–Cas9 genes and showed that the corresponding proteins are able to block the activity of CRISPR-Cas9—derived from bacterial type II CRISPR-Cas systems—in human cells. in a paper. The team’s work, published last week (December 8) in Cell, could help researchers better understand naturally occurring CRISPR systems and better modulate the activity of CRISPR-based gene-editing tools for research and clinical applications.

Notably, the work is “going specifically after Cas9 and then applying the discoveries in human cells,” Harvard’s George Church, who was not involved in the study, wrote in an email to The Scientist.

“The identification of those much awaited anti-CRISPR proteins for type II systems started by classical in silico searches based on sequence similarity with already known anti-CRISPR proteins,” Philippe Horvath, a senior scientist at DuPont in France who first showed that the CRISPR system provides resistance to phages in prokaryotes and who was also not involved in the study, wrote in an email to The Scientist. “What is less trivial in this work, and really crafty, is the iterative combination of sequence similarity searches and genetic context analyses, prophesizing that type II anti-CRISPR ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies