Lab-Grown Lungs Transplanted into Pigs

The lungs survived with no complications in the animals for up to two months.

Written bySukanya Charuchandra
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: © ISTOCK, TAXZI

Researchers have transplanted bioengineered lungs into pigs successfully for the first time, according to a study published this week (August 1) in Science Translational Medicine.

The team harvested lungs from dead pigs to construct a scaffold for the bioengineered lung to hold fast to. They used a solution of soap and sugar to wear away all the cells of the lungs, leaving behind only collagen, a protein that forms the support structure of the organ. Next, they removed one lung from every recipient pig, and used cells from those lungs, together with the collagen scaffold, growth factors, and media, to grow a new lung in a bioreactor. After a month, the lungs were transplanted into the recipient pigs.

As the cells came from the same animal that then received a bioengineered lung, there was no organ rejection. The researchers euthanized the recipient animals and tested their ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH