Largest Human Genetic Variation Repository Yet

An open-access catalog of tens of thousands of human exome sequences highlights the power of a very large genomic dataset in pinpointing genes linked to rare diseases.

Written byAnna Azvolinsky
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

FLICKR, SHAURY NASH An international team led by researchers at the Broad Institute of MIT and Harvard has compiled and analyzed the largest aggregate collection of human protein-coding sequences to date. The researchers, members of the Exome Aggregation Consortium (ExAC), have made these raw data openly accessible to the research community since 2014. In the team’s latest analysis of the exomes from around the world—presented in part at a genomics conference in 2015—the team highlighted the utility of the large dataset to identify rare disease–causing variants and genes that are particularly sensitive to mutational variation, including loss of function. The results are published today (August 17) in Nature.

“The important part of the work is the large number of [exomes],” Stephen Scherer, who studies variation in the human genome at the Hospital for Sick Children and the University of Toronto, Canada, but was not involved in the work, told The Scientist in an email. “This is good data that research and clinical communities can use in different ways.”

“This is the deepest anyone has gone for any substantial part of the [human] genome,” said Jay Shendure of the University of Washington in Seattle, who penned an accompanying perspective but was not involved in the research.

The protein-coding sequences—which comprise less than 2 percent of the entire human genome—“are the parts of the genome we understand the best and they are also the regions ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform