Laxative Causes Long-Term Changes to Mouse Microbiome

Acute bouts of diarrhea could have lasting effects on the microbiota and host immune system activation, a mouse study suggests.

Written byAbby Olena, PhD
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A section of the mouse gut imaged with confocal microscopy. Mouse epithelial nuclei are labeled in blue, the mucus layer in green, and bacteria in yellow and red. The large, yellow and golden structures are food fibers. The mucus is thick and continuous as this mouse was not experiencing diarrhea.CAROLINA TROPINI, SONNENBURG LAB, STANFORD UNIVERSITYAn over-the-counter laxative causes more than just the familiar effects of diarrhea. According to a study published today (June 14) in Cell, the make-up of the microbiota and immune system activation changed after mice received a laxative that induced diarrhea for less than a week.

The study suggests that “the idea that the microbiome is acquired early in life and then is just very stable is a bit of an oversimplification,” says Andrew Gewirtz, an immunologist at Georgia State University who did not participate in the work. “In reality, a lot of different things are perturbing the microbiome all the time.”

When she was a PhD student, Carolina Tropini, a biophysicist and current postdoc in Justin Sonnenburg’s lab at Stanford University, noticed that some bacteria responded to osmotic shock—that is, rapid changes in the concentration of water and the molecules dissolved in it—by shrinking, but were able to start growing again once their environment was back to normal.

The microbes in the human gut experience different concentrations of dissolved substances ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies