Life Reemerged Just Years After Dinosaur-Killing Asteroid Impact

Nutrient-rich water helped marine organisms reinhabit Chicxulub crater relatively quickly after the mass-extinction event.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ISTOCK, SOLARSEVENLess than a decade after a 10-kilometer-wide asteroid wiped out 75 percent of life on Earth, including some dinosaur species, sea creatures started to call the impact crater home, researchers report today (May 30) in Nature. The result offers clues to how marine life may respond to a changing climate, the scientists suggest.

The new work reveals “how resilient life can be,” Gareth Collins, a planetary scientist at Imperial College London who was not involved in the research, tells Science. “Such a rapid recovery . . . is remarkable.”

Study coauthor Chris Lowry, a postdoc at the University of Texas, and colleagues made the discovery after analyzing rock samples taken from beneath Chicxulub crater, which sits in the Gulf of Mexico and was created around 66 million years ago. In the rock were microfossils—the remains of single-celled organisms such as algae.

“Microfossils let you get at this complete community picture of what’s going on,” Lowery says in university statement. “You get a chunk of rock and there’s thousands of microfossils there, so we can look at changes in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ashley Yeager

    Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio