Live Imaging Using Light-Sheet Microscopy

How to make the most of this rapidly developing technique and a look at what's on the horizon

| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

CONFOCAL COMPARE: Scientists built a light-sheet microscope to study the development of Maritigrella crozieri, a large flatworm found in the Caribbean. Their new SPIM setup provided more complete views of fixed larvae compared with traditional confocal microscopy. (Nuclei are stained green.)BMC DEVELOPMENTAL BIOLOGY, doi:10.1186/s12861-016-0122-0, 2016.Last summer, Elizabeth Hillman showed participants in a Cold Spring Harbor Laboratory course the new light-sheet microscope she had invented. Students pulled leeches out of a pond and imaged them wiggling under the instrument, which shoots frames so quickly that the creatures’ quick movements were captured with no blur. “It was a von Leeuwenhoek moment, where we felt like we were seeing things we’ve never seen before,” says Hillman, an associate professor of biomedical engineering and radiology at Columbia University in New York.

Since 2004, when the first paper on light-sheet microscopy (aka selective plane illumination microscopy, or SPIM) appeared (Science, 305:1007-09), users of the technique have coalesced into a growing community of enthusiastic biologists. Compared with confocal microscopy, SPIM takes images more gently and rapidly, which allows researchers to track biological processes in 3-D at higher resolution over longer time periods. There are many variations of SPIM, but all use laser light focused into a thin sheet and a detection arm that is oriented perpendicular to the plane illuminated by the light sheet. In most SPIM setups, only the part of the sample that is being imaged becomes illuminated—which basically allows you to optically section your sample and reduce light damage. Researchers commonly use the technique to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Kelly Rae Chi

    This person does not yet have a bio.

Published In

November 2016

Nimble Neurons

The remarkable adaptability of the nervous system

Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
Explore polypharmacology’s beneficial role in target-based drug discovery

Embracing Polypharmacology for Multipurpose Drug Targeting

Fortis Life Sciences
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

The Scientist Placeholder Image

Gilead’s Capsid Revolution Meets Our Capsid Solutions: Sino Biological – Engineering the Tools to Outsmart HIV

Stirling Ultracold

Meet the Upright ULT Built for Faster Recovery - Stirling VAULT100™

Stirling Ultracold logo
Chemidoc

ChemiDoc Go Imaging System ​

Bio-Rad
The Scientist Placeholder Image

Evotec Announces Key Progress in Neuroscience Collaboration with Bristol Myers Squibb