Loss of Potential

In the fruit fly, the ability of neural stem cells to make the full repertoire of neurons is regulated by the movement of key genes to the nuclear periphery.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WINDOW OF FATE : In the NB7-1 neural progenitor cell, during the first two cell divisions, when the Hunchback gene (hb) is active and the cell triggers production of U1 and U2 motor neurons, hb is located in the interior of the nucleus (1). It remains there for an additional three cell divisions, during which it is no longer transcribed and the progenitor makes different motor neurons (2). After five cell divisions, the progenitor can no longer generate motor neurons, and hb moves to the nuclear lamina, where it becomes permanantely silenced (3). This suggests that the ability of neural stem cells to make different types of neurons is regulated by the relocation of genes to the nuclear periphery. PRECISION GRAPHICS

The paper
M. Kohwi et al., “Developmentally regulated subnuclear genome reorganization restricts neural progenitor competence in Drosophila,” Cell, 152:97-108, 2013.

Stem or progenitor cells give rise to different types of cells at different stages of development. Over time, they can lose the ability to generate some of these cell fates. Understanding how progenitor cells lose this potential, and how it might be regained, has implications for the therapeutic use of stem cells. But little is known about the mechanisms by which this “loss of competence” is regulated.

To find out, Chris Doe and Minoree Kohwi of the University of Oregon looked at neural progenitor cells called NB7-1 neuroblasts in Drosophila embryos. As they divide, these neuroblasts give rise to smaller cells that form different types ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Dan Cossins

    This person does not yet have a bio.

Published In

Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
iStock: Ifongdesign

The Advent of Automated and AI-Driven Benchwork

sampled
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit