Lost Colonies

Next-generation sequencing has identified scores of new microorganisms, but getting even abundant bacterial species to grow in the lab has proven challenging.

Written byAnna Azvolinsky
| 14 min read

Register for free to listen to this article
Listen with Speechify
0:00
14:00
Share

TAMING THE BEAST: Colored scanning electron micrograph of a segmented filamentous bacterium (SFB, orange) reaching up from a bed of mouse intestinal cells (green). SFB was successfully cultured for the first time this year, a half a century after it was first discovered.COURTESY OF PAMELA SCHNUPF. NATURE, 520:99-103, 2015.

In 2001, Nicole Dubilier, a marine biologist at the Max Planck Institute for Marine Microbiology in Bremen, Germany, made a surprising discovery—two symbiotic bacterial species living inside a gutless marine worm, Olavius algarvensis. To better understand the unique relationship among the three species, Dubilier set out to culture the two symbionts. But nearly 15 years later, she has yet to successfully grow the bacteria in the lab.

Her best attempt kept the microbes alive for about 10 months, Dubilier says, but then the culture “just died on us. . . . It’s a kamikaze project. How long can you have someone put in all their effort if it’s constantly unsuccessful?”

Dubilier is hardly alone in her plight. A heaping teaspoon of soil or a shot ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies