Lost Colonies

Next-generation sequencing has identified scores of new microorganisms, but getting even abundant bacterial species to grow in the lab has proven challenging.

Written byAnna Azvolinsky
| 14 min read

Register for free to listen to this article
Listen with Speechify
0:00
14:00
Share

TAMING THE BEAST: Colored scanning electron micrograph of a segmented filamentous bacterium (SFB, orange) reaching up from a bed of mouse intestinal cells (green). SFB was successfully cultured for the first time this year, a half a century after it was first discovered.COURTESY OF PAMELA SCHNUPF. NATURE, 520:99-103, 2015.

In 2001, Nicole Dubilier, a marine biologist at the Max Planck Institute for Marine Microbiology in Bremen, Germany, made a surprising discovery—two symbiotic bacterial species living inside a gutless marine worm, Olavius algarvensis. To better understand the unique relationship among the three species, Dubilier set out to culture the two symbionts. But nearly 15 years later, she has yet to successfully grow the bacteria in the lab.

Her best attempt kept the microbes alive for about 10 months, Dubilier says, but then the culture “just died on us. . . . It’s a kamikaze project. How long can you have someone put in all their effort if it’s constantly unsuccessful?”

Dubilier is hardly alone in her plight. A heaping teaspoon of soil or a shot ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH