A New Model of Lung Disease Paves the Way for Personalized Treatments

Scientists engineered a lung-on-a-chip model from patient cells that mimics cystic fibrosis.

Nele Haelterman, PhD Headshot
| 4 min read
Don Ingber engineered cystic fibrosis airway chips that recapitulate patient symptoms.
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Cystic fibrosis (CF) is a devastating hereditary disease that causes persistent lung infections, which limit a patient’s ability to breathe over time. While recent therapeutic breakthroughs improve patient life expectancy, many ultimately succumb to CF because available therapies fail to protect against respiratory infections. Researchers have struggled to develop better treatments because few preclinical models replicate key CF features and enable rigorous drug testing, but hope is on the horizon.1

In a recent study published in the Journal of Cystic Fibrosis, Don Ingber and his group at the Wyss Institute of Biologically Inspired Engineering presented the CF airway chip—a new in vitro model engineered with patient cells.2 This chip, which mimics the pathological hallmarks of the disease, will allow scientists to better understand CF pathogenesis and screen for more effective drugs to treat the disorder in patients with diverse genetic backgrounds and comorbidities.

Ingber has spent a large part of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Nele Haelterman, PhD Headshot

    Nele Haelterman, PhD

    Nele, developmental biologist and geneticist in heart and soul, is a science editor with The Scientist’s Creative Services Team. She writes to inspire scientists and improve the academic research culture.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo