Machine Learning Optimizes Images for Stimulating Monkey Neurons

Neural networks generate abstract images designed to activate particular cells, lending insight into their function.

Written byRuth Williams
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

ABOVE: A series showing the process of neural network-generated image evolution.
PONCE, XIAO AND SCHADE ET AL.

Showing monkeys a series of computer-generated images and simultaneously recording the animals’ brain cell activities enables deep machine learning systems to generate new images that ramp up the cells’ excitation, according to two papers published today (May 2) in Cell and Science.

“It’s exciting because it’s bridging the fields of deep learning and neuroscience . . . to try and understand what is represented in different parts of the brain,” says neuroscientist Andreas Tolias of Baylor College of Medicine who was not involved with either of the studies, but has carried out similar experiments in mice. “I think these methods and their further development could provide a more systematic way for us to open the black box of the brain,” he says.

It’s a goal of sensory neuroscience to understand exactly which stimuli activate ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo
Discover how to streamline tumor-infiltrating lymphocyte production.

Producing Tumor-infiltrating Lymphocyte Therapeutics

cytiva logo

Products

10x-genomics-logo

10x Genomics and A*STAR Genome Institute of Singapore Launch TISHUMAP Study to Advance AI-Driven Drug Target Discovery

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella