Magnetic Microrobots Deliver Cells Into Living Animals

The miniscule carriers successfully transported and released live cells at a particular location within living mice.

Sukanya Charuchandra
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Researchers used magnetically driven microrobots to carry cells to predetermined spots within living zebrafish and mice, they report in Science Robotics today (June 27). The authors propose using these hair-width gadgets as delivery vehicles in regenerative medicine and cell therapy.

The scientists used a computer model to work out the ideal dimensions for a microrobot; spiky, porous, spherical ones were deemed best for transporting living cells. They printed the devices using a 3-D laser printer and coated the bots with nickel and titanium to make them magnetic and biocompatible, respectively. An external magnetic field applied to the animal then leads the microrobots.

To begin with, the research team tested the ability for the robots to transport cells through cell cultures, blood vessel–like microfluidic chips, and in vivo in zebrafish. Further, they used these microrobots to induce cancer at a specific location within mice by ferrying tumor cells to the spot. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Sukanya Charuchandra

    Sukanya Charuchandra

    Originally from Mumbai, Sukanya Charuchandra is a freelance science writer based out of wherever her travels take her. She holds master’s degrees in Science Journalism and Biotechnology. You can read her work at sukanyacharuchandra.com.

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours