Making Sense of the Tumor Exome

An algorithm can pick out biologically and clinically meaningful variants from whole-exome sequences of tumors.

kerry grens
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, NEPHRONIn the march toward personalized medicine, genotyping cancers has become more and more complex. Panels that pick up variations in hundreds of potentially important genes can help physicians determine how a particular tumor operates and the best course of treatment. Whole-exome sequencing—the analysis of all the coding regions of the genome—has been somewhat of a pipe dream for clinical oncology, but a study published today (May 19) in Nature Medicine introduces a platform for analyzing the entire exome of cancer patients’ tumors.

“It’s fantastic,” said Sameek Roychowdhury, an oncology genomics researcher at Ohio State University who did not participate in the study. “It’s what everybody needs to see happening for this field.”

The new whole-exome platform extracts DNA from a preserved tumor sample, sequences all of the coding regions in the genome, and runs the data through an algorithm that can make sense of the variations uncovered and pick out those for which an available treatment might be appropriate. Importantly, the protocol uses tumor samples fixed in formalin and embedded in paraffin, which is a standard method for storing tumor tissue, but one that tends to make sequencing a headache. “This ability to use the sequencing technology for those kinds of [preserved] materials gives us access to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • kerry grens

    Kerry Grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome