Mapping Brain Proteins

Researchers are using souped-up mass spectrometry to localize proteins within brain cells.

Written byDevika G. Bansal
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

© HENNING DALHOFF/SCIENCE SOURCE

Cellular factories perform their functions by localizing and trafficking proteins into compartments where they can serve specific purposes. Because of this, a protein’s subcellular coordinates offer valuable clues about its activities.

Scientists can visualize protein distribution within cells using super-resolution microscopy—either by tagging proteins with fluorescent probes or by using antibodies. But such methods are typically not scalable and require researchers to restrict their choice of proteins to a known set.

Unbiased mass spectrometry–based proteomic methods offer a broader look, and researchers appreciate the accuracy, specificity, and scale they afford. Recently scientists have adapted the approach to study protein activity at the sub-cellular level. Dubbed spatial proteomics, this new methodology allows researchers to create detailed cellular maps and peek into the hidden life of proteins—where ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

February 2018

Plant Science to the Rescue

Research on plant microbiomes and viruses could save our food supply

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo