Mapping the Human Connectome

A new map of human cortex combines data from multiple imaging modalities and comprises 180 distinct regions.

Written byTanya Lewis
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A multimodal map of human cortex: areas connected to hearing (red), touch (green) vision (blue) and opposing cognitive systems (light and dark)WASHINGTON UNIVERSITY; MATTHEW GLASSER, DAVID VAN ESSENSince the turn of the 20th century, neuroscientists have been trying to map the human brain. Now, using data from the Human Connectome Project, researchers from Washington University School of Medicine in St. Louis have created a multimodal map of the human cortex that combines data from cortical architecture, function, connectivity, and topography. The map, detailed today (July 20) in Nature, identifies 180 brain areas, 97 of which are new to neuroscience.

“It’s really a breakthrough in mapping the living human brain using [magnetic resonance imaging-based] methods,” neuroscientist Katrin Amunts at the University of Düsseldorf, Germany, who was not involved in the work, told The Scientist. “It’s methodically beautiful because it’s a multimodal approach, so it integrates different aspects of brain organization,” she added.

The gold standard for brain mapping is still based on Brodmann’s map, developed in 1909, which divided the cerebral cortex into 50 different areas based on its cellular architecture. But this was based on the study of just a single postmortem human brain. Subsequent maps have improved upon Brodmann’s, but they typically represented only a single modality of brain structure or function and were based on a small number of individuals. Washington University’s ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control