Microbe’s Diversity Is Vast, Ancient

A marine cyanobacterium possesses astounding genomic diversity, yet still organizes into distinct subpopulations that have likely persisted for ages.

Written byKerry Grens
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

MIT, CARLY SANKERThe cyanobacterium Prochlorococcus is arguably one of the most important organisms on the planet when it comes to supporting life. Hovering near the surface of the ocean, these microbes—a trillion trillion of them—produce half of the world’s oxygen. Given their abundance, results published today (April 24) in Science illustrating their astounding genomic diversity are not terribly surprising. But the study also uncovered genomic lineages, or “backbones,” that may have originated millions of years ago.

“Some of us did not believe that microbes are infinitely diverse,” despite a prevailing assumption, said Steve Giovannoni, who studies bacterioplankton at Oregon State University and who was not involved in the study. “That very high diversity is channeled into patterns, and we’re starting to see what those patterns look like.”

Sallie Chisholm, a microbial ecologist at MIT, has been studying Prochlorococcus for years. Previous genomic studies of the microbe had shown that individuals varied greatly from one another. Remarkably, within the Prochlorococcus strain in her current study—the so-called high-light–adapted Prochlorococcus—individuals share only about 1,450 “core” genes among the 2,000 genes in each genome. The rest are variable. (For comparison, humans share 95 percent of their genes with chimpanzees.) To dive deeper into Prochlorococcus diversity, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform