Microbes Thrive in Deepest Ocean

Researchers find remarkably active bacteria in the Mariana Trench, where they live under pressure 1,000 times greater than at the surface.

Written bySabrina Richards
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

The central part of the autonomous instrument that was deployed to measure the O2 dynamics of the sea-bed in the Mariana Trench at a depth of 11 km. Data documented intensified microbial life in the bottom of the trench as compared to conditions at the surrounding abyssal plains at 6 km water depth.ANNI GLUDEven the deepest spot on the ocean floor supports a vigorous microbial ecosystem, according to new research. An international collaboration found that in the Mariana Trench—nearly 11 kilometers (7 miles) below the surface—microbes easily metabolize the organic matter that falls to this depth, despite enduring 1,000 times more pressure than organisms at sea level. The findings, published today (March 17) in Nature Geoscience, demonstrate that these microbial communities have evolved adaptations to survive—and thrive—under extreme pressure.

The research “shows that microbes are basically able to cope with any conditions on this planet,” said Hans Røy, a geomicrobiologist at Aarhus University in Denmark who did not participate in the research. Even at the highest pressures on the planet, “microbes appear to be just fine.” Coincidentally, the findings come hot on the heels of the discovery that microbes live in basalt rock hundreds of meters below the ocean floor.

Ocean microbes are critical players in the carbon cycle. If organic matter avoids microbial digestion as it falls to the sea floor, and remains undigested, it ultimately turns into fossil fuels. Microbes, by degrading this matter and releasing CO2, keep carbon cycling in the ocean, explained Ronnie Glud, an aquatic biogeochemist at the University ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH