Microbes Thrive in Deepest Ocean

Researchers find remarkably active bacteria in the Mariana Trench, where they live under pressure 1,000 times greater than at the surface.

Written bySabrina Richards
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

The central part of the autonomous instrument that was deployed to measure the O2 dynamics of the sea-bed in the Mariana Trench at a depth of 11 km. Data documented intensified microbial life in the bottom of the trench as compared to conditions at the surrounding abyssal plains at 6 km water depth.ANNI GLUDEven the deepest spot on the ocean floor supports a vigorous microbial ecosystem, according to new research. An international collaboration found that in the Mariana Trench—nearly 11 kilometers (7 miles) below the surface—microbes easily metabolize the organic matter that falls to this depth, despite enduring 1,000 times more pressure than organisms at sea level. The findings, published today (March 17) in Nature Geoscience, demonstrate that these microbial communities have evolved adaptations to survive—and thrive—under extreme pressure.

The research “shows that microbes are basically able to cope with any conditions on this planet,” said Hans Røy, a geomicrobiologist at Aarhus University in Denmark who did not participate in the research. Even at the highest pressures on the planet, “microbes appear to be just fine.” Coincidentally, the findings come hot on the heels of the discovery that microbes live in basalt rock hundreds of meters below the ocean floor.

Ocean microbes are critical players in the carbon cycle. If organic matter avoids microbial digestion as it falls to the sea floor, and remains undigested, it ultimately turns into fossil fuels. Microbes, by degrading this matter and releasing CO2, keep carbon cycling in the ocean, explained Ronnie Glud, an aquatic biogeochemist at the University ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies